Кабели и провода создаются для передачи электрической энергии на расстояния с минимально возможными потерями. Чтобы наиболее эффективно передавать мощность от источника к потребителям их создают с:
1. Максимальной проводимостью токопроводящих магистралей:
2. Исключением образования случайных, несанкционированных путей стекания энергии токами утечек.
Только одновременное выполнение этих условий позволяет надежно и длительно передавать и получать электрическую энергию.
Как обеспечивается высокая проводимость токопроводящих жил
Потери мощности, происходящие при прохождении токов по металлам, напрямую связаны с величиной их электрического сопротивления. Они возрастают при его увеличении.
Чтобы улучшить прохождение электрического тока по проводам и кабелям снижают величину сопротивления их жил за счет:
- подбора материала токопроводящих проводников по величине удельного сопротивления металлов и сплавов;
- изготовления поперечного сечения жилы по допустимой величине токовой нагрузки;
- учета температуры рабочей среды;
- влияния времени протекания технологических процессов;
- ограничения общей протяженности магистралей электрической цепи.
В процессе эксплуатации состояние проводимости и электрического сопротивления токопроводящих жил постоянно контролируется различными измерительными и защитными устройствами в ручном или автоматическом режиме.
Выбор проводника по удельному сопротивлению материала жил
Напомним, что этим параметром характеризуют величину электрического сопротивления металла в Омах, представленного цилиндром длиной в 1 метр и с поперечным сечением площади в 1 м кв. Она выражается единицей измерения «Ом∙мм2/м» и составляет для меди, алюминия, стали и латуни 0,017; 0,026; 0,103; 0,025 Ом∙мм2/м соответственно.
По этому показателю медные проводники используют там, где требуется максимально снизить потери тока на преодоление внутреннего сопротивления цепи. Как правило, их чаще всего применяют в кабелях или шнурах питания с многопроволочными жилами.
Показатели алюминия и его сплавов несколько хуже по проводимости, но они дешевле в производстве и обладают меньшим весом. Поэтому алюминиевые проводники используют на протяженных магистралях, которые дополнительно подняты на большую высоту посредством специальной конструкции опор и системы изоляторов.
Проволоку из стальных сплавов или латуни добавляют для повышения жесткости и прочности протяженных трасс чтобы исключить обрывы проводов при увеличенных нагрузках, создаваемых порывами мощного ветра, наносами снега и другими аномальными действиями природных явлений.
Выбор токопроводящих жил по площади поперечного сечения
Для проведения электротехнических расчетов при проектирования систем электроснабжения все оборудование создается с едиными стандартизированными показателями, сведенными в таблицы.
Жилы проводов и кабелей изготавливают с калиброванной площадью поперечного сечения. Например, для средств связи и телефонных линий диаметр круглого сечения одной проволоки может быть 1,2; 0,9; 0,7; 0,64; 0,5; 0,4; 0,32 мм, а у многопроволочной жилы — от 0,52 до 0,1 мм.
Для промышленных целей выпускают провода и кабели с жилами 1,5; 2,5; 4; 6 мм2 и другими стандартизированными площадями сечений.
Допустимая нагрузка, создаваемая мощностями, проходящими по жилам кабеля, зависит от марки металла, площади его сечения и условий эксплуатации, обеспечивающих баланс между нагревом провода и отводом тепла в окружающую среду.
По виду протекающей по кабелю нагрузки их классифицируют на:
- силовые, передающие электрическую энергию повышенных мощностей;
- контрольные, работающие в цепях измерения, защит, автоматики;
- управления, используемые для коммутации автоматических устройств;
- связи и телекоммуникаций;
- другого назначения.
Способы предотвращения токов утечек
Движение электрических зарядов всегда происходит по замкнутой цепи от потенциала генераторного конца к приемному по двум изолированным жилам. Если ее разомкнуть, то ток прекращается.
Когда же между жилами нарушается диэлектрический слой, то часть тока, в зависимости от создавшегося сопротивления перехода, начинает стекать через место повреждения и может создать короткое замыкание. В результате происходит бесполезная потеря энергии, которая могла бы приносить пользу.
Чтобы исключить подобные случаи оголенные металлические провода на ВЛ отделяют друг от друга воздушным зазором, обладающим свойствами надежного диэлектрика.
В кабелях токопроводящие жилы располагают максимально близко друг к другу, а предотвращение токов утечек и коротких замыканий возлагают на слой органической или пластиковой изоляции, покрывающей поверхности металлических проволок.
Ее диэлектрические свойства рассчитаны на то, чтобы надежно выдерживать только определенный уровень напряжения, которое создается между жилами под нагрузкой кабеля. Если его допустимая величина будет превышена, то вполне возможен электрический пробой слоя изоляции и протекание тока утечки через место образовавшегося дефекта.
Эта особенность конструкций кабелей и проводов диктует необходимость их применения в строгом соответствии с границами напряжений, на которое рассчитана изоляция. Другими словами, телефонный кабель с медными жилами, например, 1 мм кв нельзя использовать для слаботочных цепей управления 380 или 220 вольт даже в том случае, когда создан большой запас по токам нагрузки. Иначе повышенное для него напряжение просто пробьет слой изоляции.
При монтаже и эксплуатации кабели подвергаются механическим и тепловым нагрузкам, действующим в разных направлениях. Для предохранения от их разрушительного воздействия создается защита – внешняя оболочка или дополнительная броня различных конструкций.
Защитные оболочки создаются в герметичном исполнении. Они дополнительно предотвращают разрушительное действие грунтовых вод, кислот и щелочей, содержащихся в почве, куда чаще всего помещаются кабели.
Нарушение герметичности оболочки кабеля приводит к образованию внутри него влаги, которая уменьшает сопротивление диэлектрического слоя и может стать причиной пробоя изоляции.
Важной характеристикой изоляции и защитной оболочки кабеля является ее свойство противостоять возгоранию. В нормальных условиях эксплуатации диэлектрический слой подвергается только действию рабочей температуры, создаваемой нагрузкой. Она не является критической для его применения.
Однако, при аварийных ситуациях одни материалы, такие как бумага и масло, подвержены возгоранию и сами являются после этого источниками распространения огня.
Другие же могут просто не поддерживать горение, но плавиться, разрушаться от воздействия повышенной температуры. Кабели с такой изоляцией называют «не поддерживающими горение» и в маркировке обозначаются индексами «нг».
Они подразделяются на две группы, которые не поддерживают процесс горения при:
1. Одиночной прокладке;
2. Групповом размещении.
Выбором кабельной продукции для промышленных целей занимаются инженеры проектных организаций.
Источник
Перейти на сайт | Как это работает | Возможности ПО | Кейсы